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Analytic solutions are obtained for problems of the flow of a viscous 
Newtonian medium within the cavity of a hyperbolic cylinder and a single- 
cavity hyperboloid of revolution. 

It is well known that in the practice of processing various materials, in par- 
ticular, polymers, we use an extrusion through fillers in which cases of convergent 
flows are realized~ An experiment shows that it is essential to select an efficient 
die form, since this form also affects the properties of the products and the pres- 
sure drop needed for extrusion [I, 2]. Together with this, the rheological behavior 
of many processable materials is close to the behavior of a viscous incompressible 
fluid with a large and constant viscosity coefficient. These circumstances contri- 
bute considerably to the solution of problems for the flow of such a medium in the 
cavity of a hyperbolic cylinder and a single-cavity hyperboloid of revolution. 

The results obtained allow us to study in detail the deformation process of a 
flowing medium and to estimate the pressures needed for the flow in dies of various 
form. 

First of all, we study a problem of the two-dimensional flow of a viscous in- 
compressible fluid in the cavity of a hyperbolic cylinder. 

Let a viscous medium that satisfies the equations of motion and of incompressi- 
bility 

Op - -  ~lAv~, Ovi - O, (1) 
Ox~ Ox i 

fill the cavity of a hyperbolic cylinder 

x ~- _ ~y- tg  ~- ~ - ~%. ( 2 ) 

Here a is half the angle between the asymptotes of the hyperbolas formed at a sec- 
tion of the hyperbolic cylinder by the planes parallel to the XOY plane (Fig. I). 
We call angle 2e the aperture angle of the hyperbolic cylinder. The pressures on 
both sides of the slot at infinity approach constant values that differ in magnitude. 
The medium flows because of the pressure difference, and the flow velocity becomes 
zero on surface (2) due to the adhesion characteristic of viscous media. We deter- 
mine the velocity fields, the deformation velocities, and the pressures in the flow- 
ing medium. 

To describe the process under study it is convenient to use the ~, ~, and z 
coordinates of the elliptical cylinder [3] (Fig. i), which are related to the x, y, 
and z coordinates by the equations 

x ~ -  ag (1 + ~) (1 + ~0; y~ = - a~ ~rt; z = z. (3) 
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Fig. i. Orthogonal system of cofocal ellipses and 
hyperbolas with focuses F and F'. These curves gen- 
erate coordinate surfaces in the following coordi- 
nate systems: elliptical cylinder (when shifting 
perpendicular to the figure plane); flattened ellip- 
soid of revolution [when revolving around the axis 
(z),  ( z ' ) ] .  
Fig. 2. Variation of Ap (dashed lines) and v (solid 
lines) with coordinate in the symmetry plane of a 
hyperbolic cylinder. 

The coordinates of the line here are cofocal ellipses, cofocal hyperbolas, and planes 
parallel between themselves. Here x, ~, and z vary at the following limits: 

O ~ X ~ o o ;  - -  1 ~ 1 . ~ <  0; - -  oo < z . <  co .  

We note that in this coordinate system the equation of the plane y = 0 between the 
lines x = -~0 and x = a 0 takes the form X = 0; the equation of the same plane be- 
yond the limits of the given interval takes the form ~ = 0, and the equation of the 
plane x = 0 takes the form ~ = -i. The Lam6 coefficients for the coordinate system 
selected are determined by the equations 

ao ~ / "  Z - g  . H u ao ]/ , /  %--I* H ~ - = - - ~ - -  ~,(1+s ' -- 2 . - -p , ( l+bt )  ; H = = I .  (4 )  

It is evident that in the problem under study the quantities of interest to us do 
not depend on z, and the velocity of the vector along the x axis is equal to zero. 
Thus, in correspondence with the theory of orthogonal curvilinear coordinates (see 
[4], for example), the nonzero components of the viscous stress tensor zik in the 
x and ~ coordinates take the form 

1 

%~" H~ \ 0--~ ~ H~--~" O~t ' 

2,1 i Or, v,, O H , ) .  
"%' H~ -O~t -~ H-~- " " O~ ' 

Or, 1 Ov~ I [ OH,+ OH, ]I 

(5) 

The equations of motion (I) can be written in terms of the components of the stress 
tensor (5) in the assumed coordinate system as follows [4]: 

1282 



O). H~ OL O;~ ' H~ @ H~ at,~ ( 6 )  

_ _  , 0 ' ~  H~ Oz~.~ 2 OH~ Op 1 OH~ ( ,% _ .%) -:- _ _  + ~ . _ _ 

The equation of incompressibility in the given case reduces to the equation 

a (H~v~) , 0 (Hxv.) = O. ( 7 )  
O)~ ab~ 

We seek the solution for the flow velocity in the form 

v~ = v~. (L, ,a), v .  = 0, (8) 

i.e., we assume that the lines of flow in the process under study are hyperbolas of 
the family of the coordinate lines. Thus, after substituting (4) and (5) into (6) 
and taking (7) and (8) into account, we have 

O p = - - . n  1 Ivy. ( ) ~ - } - ~ O ( I @ - ~ ) + ~ ( 1 - I - X )  Ovx ( 1 @ 2 , ~ ) - - - - 0 2 v ~  2 t x ( I @ ~ ) ] ;  (9.1) 
0% ao V ~ (1 ,-k )~) (% - -  I ~) L 2 ()~ - -  ,tO 2 @ @2 J 

/ 

0 p  = ~___~1 V 2~(1 q- X )  ( 2 0 v ~  _ 1 " 
a~ a o (~ - ~t) I /  ~ - -  ~ a,t~ v,. ~ ) .  ( 9 . 2 )  

After differentiating the first of these equations with respect to ~ and the second 
with respect to x and subtracting one from the other, we eliminate the pressure and 
obtain the equation for the velocity, which we do not present here. By immediately 
substituting this equation into (9) and conducting the procedure indicated, we can 
verify that the general solution for the flow velocity in the case under study takes 
the form 

A ~ - B  
v~- V ~-~ (i0) 

Here A and B are constants. We use the following two conditions to determine the 
constants. First of all, the velocity is equal to zero on the surface of the hyper- 
bolic cylinder. Consequently, for ~ = ~a, according to (I0), we have 

A I ~  + B = 0. 

In accordance with (2) and (3) tan2~ = (I + ~a)/-~a, i.e., 

~t~ = - -  cos 2 g and B - -  A cos 2 ~ = 0. ( l l )  

In addition, we use the quantity of the second liquid flow rate per unit of the 

s l o t .  F o r  a c y l i n d e r  c o r r e s p o n d i n g  t o  t h e  o n e  c h o s e n ,  ~ = c o n s t ,  Q =  2 ,!'H~v~d~ 
0 

When calculating Q, if we consider that a a = a0sin ~ [see (3)], then 

Q =  a~ 2 ( z B - -  ~T-I sin2(z A . 
sin r162 2 

(12) 

After substituting the calculated values of A and B from (ii) and (12) into (i0), 
we arrive at the following equation for the flow velocity: 

2Q sinc~ > -? cos~- o: 

% (sin 2a  - -  2a  cos 2~) l / )~ - -  (13) 
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Fig. 3. Second flow rate of material versus 
deg(dashed curve refers to hyperbolic cyl- 

inders, and solid lines show hyperboloids of 
revolution). 

Fig. 4. Variation of Ap (dashed lines) and 
cr (solid lines) along the symmetry axis of 
the hyperboloid of revolution. 

(The velocity is distinguished only by the sign for points symmetric with respect 
to the slot,) In particular, for ~ = ~/2 this equation yields the solution of the 
problem for the flow of a viscous incompressible fluid into a slot of infinite 
width. The solution is obtained in [5, 6]. In addition, it is not difficult to 
obtain from this solution known solutions of problems for the flow of a viscous me- 
dium between two parallel planes and in a plane convergent channel. At the same 
time, the solution that was found allows us to study the properties and character- 
istics of the velocity field, the stresses, and the deformation velocities estab- 
lished in a material that flows in hyperbolic cylinders with any aperture angles in 
order to compare the possible variants. 

We also present the equation for the principal shear velocity: 

2Q sin2~z 1 / p k c o s  2cc § (1 -i- L--I- p) cos~c~ 

? = a~ (sin 2= - -  2= cos 2a) (~ - -  p)a,,2 
(14) 

We calculate the pressure. It follows from the conditions of the problem that 
the pressure is determined with accuracy up to an arbitrary term, since the flow of 
the medium is caused by the difference in the pressures on both sides of the slot. 
We see from Eq. (9.2) that the pressure in the plane of the slot is constant. Thus, 
the difference between the pressure at any point of the upper part of the cylinder 
and the slot (the pressure drop) can be obtained by integrating (9.1) over ~ from 0 
to k after substituting (13) into (9.1). Here 

4Q~1 sin2~z Y" ~(1 -b )~) ( 1 5 )  Ap 
2 (sin 2~ 2c~ cos 200 ;~--  Ix C / ~  - -  " 

If X§ Ap, independently of ~, approaches the constant 

4Qq sin~- r ( 1 6 )  Ap~ 
2 ac~ (sin 2~ - -  2~ cos 2cc) 

The equation given establishes a relation between the quantity of the flow rate of 
the medium and the limit pressure drop. 

Figures 2 and 3 illustrate some of the results obtained (they refer to the up- 
per part of the hyperbolic cylinder). Figure 2 shows the variation of Ap along the 
y axis for two of the possible configurations. It is evident that in both cases a 
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significant variation in the pressure drop occurs only in immediate proximity to the 
slot. At a distance from the slot equal to two or three times its width, the value 
Ap is very close to the limiting value. The result allows us to estimate the ap- 
plicability of the obtained solutions to those cases, when, as always happens, the 
flowing medium occupies a bounded region. Now we can confirm that the solutions 
presented are suitable for those specific processes in which the medium fills a re- 
gion that exceeds the width of the slot by several times its dimensions. We also 
draw attention to the fact that Ap decreases with an increasing aperture angle for 
an equal flow rate and an identical value of as. Dependences of the principal shear 
velocity on the coordinate are also shown in the same figure. Their difference from 
each other for ~ = ~/6 and ~ = ~/2 also emphasizes the important role of the form of 
the device in which the flow occurs. 

Figure 3 shows the variation of the value of the second flow rate of the mater- 
ial with an increase of a. 

We proceed to the case of a flow in the cavity of a single-cavity hyperboloid 
of revolution. We assume inthe present case that the viscous incompressible medium 
fills such a hyperboloid, and the difference in pressures at infinity on both sides 
of the throat circumference guarantees the flow of the medium. As before, we con- 
sider that the material adheres to the walls of the hyperboloid. The problem re- 
duces to the solution of the system of equations (i). We must note that a similar 
problem is studied in [7], but errors were made in the calculations. 

It is well known that the solution of this or any other hydrodynamic problem 
can be considerably facilitated by the efficient choice of a coordinate system. In 
the present study we use the coordinates of a flattened ellipsoid of revolution (Fig. 
i). In the three-dimensional case under study the third coordinate, % is naturally 
added to x and ~, where x, u, and ~ are related to the cylindrical coordinates z, 
r, and ~ by the equations 

z z = - -  ro)qx; r 2 = r 2 ( 1  --: r (1 -ff V); 

qD=q~ 
(17) 

and vary at the limits 

The equation of the plane z = 0 beyond the limits of the circumference with radius 
r 0 takes the form ~ = 0; the equation of the same plane within these limits takes 
the form ; = 0, and the equation of the z axis takes the form u = -I. We also pre- 
sent the Lame coefficients for the given system of coordinates 

ro ]//" k--,tL t o /  ~.-~ . 
H~ ---- - ~ -  ?~ (1 -6 )~) ; H~ ~ ~ -  --,tt (1 + ~)' 

H~ = r o V (1 q- X) (1 T ~t). 

(18) 

We introduce the aperture angle 2~ for each hyperboloid similar to the case of 
a hyperbolic cylinder studied above. According to (17), 

tg2 ~ 1 +" ,a~ 
- - ,  a r~ ~rosin~.  

- -  IrLo~ 

Since we solved the problem by a method completely analogous to that described 
for the preceding case, we omit all the intervening calculations and present only 
the results obtained. 

It follows from the solution of the problem that the lines of flow in the given 
process are hyperbolas obtained at the cross section of the surfaces ~ = const and 
the planes ~ = const. Here the flow velocity takes the form 

3Q sin ~ oc tx - -  cos* oc 
v~= 2~r~ "(I --3cos2a-=2cos3a) " 1/-(I q-;~)(~--p) (19) 
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The particular case a = 7/2 yields the solution of the problem for the flow into the 
circular hole which was obtained in [5]. We note that attempts to determine the 
flow velocities for this case in [8, 9] did not lead to a final exact result. 

The equation for the deformation velocity of the resulting shear at points of 
the symmetry axis takes the form 

3Q sinSa 1/~- (20) 
e~ = ]/ff-~r~ " (,1--3cos~cr q- 2cos3c~) (1 -F ~)2 

The pressure drop for the upper part of the hyperboloid in the coordinate sys- 
tem used is determined by the equation 

3Q~l sin acz (V-~- + arctg V-f-), ( 21 )  
hp ~r~ (1--3cos2cr 2costa) )~-- 

Ap| 3Qq sin 3a 
2r~ (1 - 3 eos~c~ + 2 eos3u) (22 )  

Graphs obtained on the basis of (20) and (21) for the variation of Ap and ~T 
are presented with the coordinate along the symmetry axis in Fig. 4. The dependency 
of the second flow rate on a that was constructed in (22) is shown in Fig. 3. 

NOTATION 

p, pressure; n, viscosity; v i, velocity components; aa, half-width of hyper- 
bolic cylinder slot; ra, radius of throat circumference of single-cavity hyperboloid 
of revolution; 2a, aperture angles of hyperbolic cylinder and hyperboloid of revo- 
lution; x, ~, and z, coordinates of elliptical cylinder; x~ ~, and w, coordinates of 
flattened ellipsoid of revolution; HX, H~, H z, and H~, Lame coefficients; Tik, com- 
ponents of viscous stress tensor; Q, second liquid flow rate per unit length of slot 
for hyperbolic cylinder and volume second flow rate of liquid for hyperboloid of 
revolution; u principal shear velocity; sT, strain rate of resulting shear; ap, 
pressure drop; Ap=, limit pressure drop. 
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